ME-GI/GIE pump vaporizer unit for LNG and ethane

MAN PrimeServ

ME-GI/GIE pump vaporizer unit (PVU) for marine systems
The ME-GI/GIE pump vaporizer unit (PVU) is a standardized high quality pump unit for supply of LNG or ethane to MAN B&W two-stroke ME-GI/GIE engines. With a compact and intelligent design, the PVU provide a more lean design and integration in the fuel gas supply system (FGSS).

Key benefits
- Low Cost LNG/ethane PVU with embedded redundancy
- Automatically controlled and integrated in MAN-ES duel-fuel control system
- Time between overhaul (TBO) cryogenic parts is 6,000 running hours
- TBO hydraulic parts is 32,000 running hours
- Compact design providing minimal footprint and low weight
- Worldwide service 24/7

Working principle

The PVU is designed to supply LNG/ethane to the pressure and temperature required by the MAN B&W two-stroke ME-GI/GIE engines.

The PVU receives cryogenic LNG/ethane supplied by a cryogenic centrifugal pump and is subsequently pressurized by a high pressure reciprocating pump, consisting of three cylinders actuated by linear hydraulic pistons.

The pressurized LNG/ethane flows through a compact printed circuit heat exchanger, in which it is heated by warm glycol water. Fine particles present in the gas are caught by the high pressure filter, before the gas is directed towards the gas valve train (GVT) and the engine.

The gas pressure delivered to the engine is controlled by hydraulic flow control of the pump. Individual control of the three cryogenic pumps heads, each having 50% capacity of full engine load. This means that the PVU can still provide full capacity with only two cold-ends in service, providing the redundancy required by the market.
PVU highlights

Low cost with embedded redundancy

With a compact and intelligent design, the PVU introduces a considerable saving in the complete (FGSS). This is because of the simplifications implemented in the design, resulting in a reduced number of sub-systems and components, and due to the cryogenic pumps being actuated individually, enabling embedded redundancy. This means that one pump cylinder can be taken out of service for overhaul, while the remaining two are fully operational still supplying 100% of the required capacity. In comparison, traditional crankshaft driven pumps requires two complete units to allow system redundancy.

Compact and intelligent design

Compared to conventional systems, the PVU offers a significant reduction in weight and size. This offers a further cost benefit considering installation costs, such as foundations, piping, cabling, and deck stiffening.

Extended TBO

The PVU also offers savings to the vessels OPEX through significant increase in TBO compared to conventional high pressure pumps. For the cryogenic parts the TBO is 6,000 running hours and for the hydraulic parts TBO is 32,000 running hours.

High reliability and easy maintenance

The PVU is designed for the highest standards of quality hence ensuring the best reliability on the market. Easy maintenance is ensured by design with the operators in mind, with easy access to exchange of spare parts.

MAN-ES strives to use the same components on the PVU as use on the ME-GI/GIE engines in order to minimize the amount of spareparts onboard. As an example the controllers (MPC’s) are identical and interchangeable with the once use on the main engine.

Engine control integration

The PVU control system design is based on knowledge of the ME-GI engine design and control system. This provides dedicated control with integrated condition monitoring features. The engine gas pressure and mass flow demands are instantly transferred to the PVU control system and further to the pump module. This results in a very stable and precise gas pressure control, in which it secures efficient ramp up and ramp down in all operating conditions. Further, the GVT downstream of the PVU control system, ensures integrated control with the ME-GI engine. The PVU control system is based on the same hardware platform as the ME engine control system, which means that no extra spare parts are required.
Scope of supply

ME-GI/GIE pump vaporizer unit

Main PVU scope
- Compact vaporizer heated by glycol water
- Cold-return line for continued circulation (no suction drum needed)
- Blow-off valve and safety valves
- Electrical cabinet with 3 x MPC
- Stand-alone hydraulic power supply (SHPS) (optional)
- Sensors for control and supervision
- Pump strainer (standard 160my)
- NG filter after vaporizer (10my)
- Filter for glycol water (250my)
- Fully automated PVU control system including supervision of operational conditions
- Participation in risk studies (HazOp)
- Supervision of installation
- Commissioning
- Participation of gas trial
- Class approval certificate for PVU (HazOp/FMEA submission to class societies)
- Installation and operation manuals
- List of capacities etc.

Additional scope offered by MAN-ES:
- Main PVU scope
- Compact vaporizer heated by glycol water
- Cold-return line for continued circulation (no suction drum needed)
- Blow-off valve and safety valves
- Electrical cabinet with 3 x MPC
- Stand-alone hydraulic power supply (SHPS) (optional)
- Sensors for control and supervision
- Pump strainer (standard 160my)
- NG filter after vaporizer (10my)
- Filter for glycol water (250my)
- Fully automated PVU control system including supervision of operational conditions
- Participation in risk studies (HazOp)
- Supervision of installation
- Commissioning
- Participation of gas trial
- Class approval certificate for PVU (HazOp/FMEA submission to class societies)
- Installation and operation manuals
- List of capacities etc.

Main components
- LNG tanks
- Bunkering station
- Low pressure feed pump
- Glycol water system
- Nitrogen supply system
- Master gas valve
- Low pressure vaporizer (if needed)
- Gas compressor (if needed)
- Piping and cabling
- Electrical power switch board

Installation
- Installation of PVU, electrical cabinet, HPS unit, glycol water system, MOP screen
- Piping: LNG pipes, HP gas pipes, glycol water pipes, control air etc.
- Hydraulic hose between PVU and HPS unit incl. heat tracing
- Electrical cabling e.g. between PVU and electrical cabinet

Approval
- FGSS class approval including PVU
- Overall HazOp

Control and safety system
- FGSS safety system with input/output from PVU control system, e.g. NG outlet temperature and pressure

PVU main data (LNG)

<table>
<thead>
<tr>
<th>PVU size</th>
<th>1000</th>
<th>2000</th>
<th>5000</th>
<th>7000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal mass flow (*1) / m_N,PVU / [kg/h]</td>
<td>1383</td>
<td>2823</td>
<td>4667</td>
<td>6762</td>
<td>7629</td>
</tr>
<tr>
<td>Max SMCR (*2) / max SMCR / [MW]</td>
<td>9.15</td>
<td>18.4</td>
<td>30.3</td>
<td>44.0</td>
<td>49.6</td>
</tr>
<tr>
<td>Glycol water flow / m_GW / [kg/h]</td>
<td>43610</td>
<td>81333</td>
<td>117180</td>
<td>176199</td>
<td>216324</td>
</tr>
<tr>
<td>Glycol water design heating duty / Q_GW / [kW]</td>
<td>300</td>
<td>600</td>
<td>980</td>
<td>1420</td>
<td>1700</td>
</tr>
<tr>
<td>Air consumption / [l/min]</td>
<td>390 l/min actual</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen consumption / [kg/h]</td>
<td>2-2.5 kg/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVU skid dimensions L x W x H / [mm]</td>
<td>3700 x 2240 x 2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVU skid weight / [ton]</td>
<td>2.5-3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PVU main data (ethane)

<table>
<thead>
<tr>
<th>PVU size</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal mass flow (*1) / m_N,PVU / [kg/h]</td>
<td>1714</td>
<td>3498</td>
</tr>
<tr>
<td>Max SMCR (*2) / max SMCR / [MW]</td>
<td>10.6</td>
<td>21.6</td>
</tr>
<tr>
<td>Glycol water flow / m_GW / [kg/h]</td>
<td>28227</td>
<td>56457</td>
</tr>
<tr>
<td>Glycol water nominal heating duty / Q_GW / [kW]</td>
<td>195</td>
<td>375</td>
</tr>
<tr>
<td>Air consumption / [l/min]</td>
<td>390 l/min actual</td>
<td></td>
</tr>
<tr>
<td>Nitrogen consumption / [kg/h]</td>
<td>2-2.5 kg/h</td>
<td></td>
</tr>
<tr>
<td>PVU skid dimensions L x W x H / [mm]</td>
<td>3700 x 2240 x 2000</td>
<td></td>
</tr>
<tr>
<td>PVU skid weight / [ton]</td>
<td>2.5-3.5</td>
<td></td>
</tr>
</tbody>
</table>

(*) Nominal mass flow calculated at reference pressure: 4 bara (PVU-1000:7000); 1.6bara (PVU-8000:10000)
(*2) Max SMCR based on LHV=47.5MJ/kg; SGC=140g/kWh

Additional scope offered by MAN-ES:
Main components
- LNG tanks
- Bunkering station
- Low pressure feed pump
- Glycol water system
- Nitrogen supply system
- Master gas valve
- Low pressure vaporizer (if needed)
- Gas compressor (if needed)
- Piping and cabling
- Electrical power switch board

Installation
- Installation of PVU, electrical cabinet, HPS unit, glycol water system, MOP screen
- Piping: LNG pipes, HP gas pipes, glycol water pipes, control air etc.
- Hydraulic hose between PVU and HPS unit incl. heat tracing
- Electrical cabling e.g. between PVU and electrical cabinet