Decades of industrial gas turbine experience and profound application knowledge have led to an evolution in small industrial gas turbines – the MGT family. The twin shaft gas turbine MGT6000 is developed for mechanical drive applications – suited for all customer requirements within a modular package design.

Benefits at a glance

- Modular design for easy and fast installation
- High efficiency
- Low emissions
- Low operating costs
- Low life cycle costs
MGT6000 Twin Shaft

Technical data

Performance at ISO conditions*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MGT6000 Twin Shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output</td>
<td>kW<sub>mech</sub></td>
</tr>
<tr>
<td>Heat rate</td>
<td>kJ/kW<sub>mech</sub></td>
</tr>
<tr>
<td>Efficiency</td>
<td>%<sub>mech</sub></td>
</tr>
<tr>
<td>Exhaust gas flow</td>
<td>kg/s</td>
</tr>
<tr>
<td>Exhaust gas temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Nominal power turbine speed</td>
<td>rpm</td>
</tr>
<tr>
<td>Power turbine speed range</td>
<td>%</td>
</tr>
<tr>
<td>NO<sub>x</sub> emissions</td>
<td>mg/Nm<sup>3</sup></td>
</tr>
<tr>
<td>CO emissions</td>
<td>mg/Nm<sup>3</sup></td>
</tr>
<tr>
<td>(ref. to 15% O<sub>2</sub>, dry)</td>
<td>ppm</td>
</tr>
<tr>
<td>(ref. to 15% O<sub>2</sub>, dry)</td>
<td>ppm</td>
</tr>
</tbody>
</table>

*all data valid for sea level, 15 °C, no inlet and exhaust pressure losses, 60 % rel. humidity, natural gas. Power output will decrease with increase of site altitude (1.1 % per 100 m), inlet pressure loss (1.9 % per 1 kPa) and exhaust pressure loss (0.9 % per 1 kPa)

Typical applications

Twin shaft gas turbines have a variable speed drive shaft which is the best and most efficient way not only to control flow or discharge pressure, but also to start a mechanical drive train. Driven units are compressors and pumps for pressure increase and transport of gaseous and liquid media.

Typical application fields are midstream and upstream oil & gas production sites operating mainly in simple cycle mode.

Gas turbines of twin shaft design are also used for power generation at fixed speed. Selection criteria in such cases are e.g. the package design or driver communality in combination with mechanical drive units.
Gas turbine
- Heavy duty, twin shaft
- 11 stage air compressor
- 6 combustion chambers
- multi-can, ACC¹ combustors
- 2 stage high pressure turbine
- 2 stage power turbine

Gas turbine package
- Package for outdoor installation
- Noise emission
 - All equipment is designed for
 - $L_{PA} = 85\, \text{dB(A)}$ measured in 1 m distance and 1.5 m height
 - $L_{PA} = 80\, \text{dB(A)}, 75\, \text{dB(A)}$
- Base frame
 - With integrated lube oil and fuel system
- Starting system
 - Variable frequency drive for gas turbine starter motor
- Integrated lube oil system
 - Main lube oil pump driven via auxiliary gear
 - Stand-by lube oil pump (AC-motor driven)
- Emergency lube oil pump (DC motor driven)
- Air to oil cooler (free standing)
- Water cooler²⁾
 - Integrated lube oil tank
 - Lube oil tank heater
 - Lube oil filter
 - Control valves
 - Oil mist separator
- Fuel system
 - Fuel gas system
 - Dual fuel system²⁾
- Air inlet system
 - Table type filter house with depth loading cartridges
 - Filtration class:
 - Pre-filter: G4,
 - Fine-filter: F9 (E11)²⁾
 - Static filter²⁾ with anti-icing²⁾
 - Pulse type filter in table or down flow arrangement²⁾
- Exhaust system
 - Transition duct
 - Expansion joint
 - Free standing stack
- Enclosure
 - Gas turbine enclosure for outdoor installation
 - Fire detection and CO₂
 - fire-fighting system
 - Water-mist fire-fighting system²⁾
 - Gas leakage detection
 - Maintenance cranes
- Turbine compressor cleaning system
 - Offline and online washing
 - Mobile wash trolley²⁾

Controls
- For installation in air conditioned control room (to be provided by others)
- Gas turbine control system
 - Gas turbine control & protection
 - Unit sequencing
 - Human machine interface (HMI)
 - Alarm management
- Compressor control (if applicable)
 - Anti-surge controller
 - Performance controller
 - Load sharing⁵⁾
- Low voltage distribution system
 - AC power supply for all electrical consumers
- Turbine starting system
 - Variable frequency drive (VFD)
 - Uninterrupted power supply system
 - Buffered with batteries
 - DC supply for emergency lube oil pump
 - AC supply for all electrical panels
- Data storage system
 - Long term data archive
 - Event logger
- Plant control system interface
 - Modbus TCP interface
 - Others optional

Documentation
- Engineering documents
- Installation manual
- Operating instructions
- Quality documentation

Factory acceptance test of turbine
- Core engine
 - ASME PTC-22

Other tests²⁾
- According to API requirements

¹ ACC = Advanced Can Combustor (Dry Low Emission (DLE) Technology)
² can be offered as option
All data provided in this document is non-binding. This data serves informational purposes only and is not guaranteed in any way. Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.

Copyright © MAN Energy Solutions.
D02085011EN Printed in Germany 10191.0